Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 215
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731811

Recently studied N-(ß-d-glucopyranosyl)-3-aryl-1,2,4-triazole-5-carboxamides have proven to be low micromolar inhibitors of glycogen phosphorylase (GP), a validated target for the treatment of type 2 diabetes mellitus. Since in other settings, the bioisosteric replacement of the 1,2,4-triazole moiety with imidazole resulted in significantly more efficient GP inhibitors, in silico calculations using Glide molecular docking along with unbound state DFT calculations were performed on N-(ß-d-glucopyranosyl)-arylimidazole-carboxamides, revealing their potential for strong GP inhibition. The syntheses of the target compounds involved the formation of an amide bond between per-O-acetylated ß-d-glucopyranosylamine and the corresponding arylimidazole-carboxylic acids. Kinetics experiments on rabbit muscle GPb revealed low micromolar inhibitors, with the best inhibition constants (Kis) of ~3-4 µM obtained for 1- and 2-naphthyl-substituted N-(ß-d-glucopyranosyl)-imidazolecarboxamides, 2b-c. The predicted protein-ligand interactions responsible for the observed potencies are discussed and will facilitate the structure-based design of other inhibitors targeting this important therapeutic target. Meanwhile, the importance of the careful consideration of ligand tautomeric states in binding calculations is highlighted, with the usefulness of DFT calculations in this regard proposed.


Enzyme Inhibitors , Glycogen Phosphorylase , Imidazoles , Molecular Docking Simulation , Kinetics , Rabbits , Animals , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Glycogen Phosphorylase/antagonists & inhibitors , Glycogen Phosphorylase/metabolism , Glycogen Phosphorylase/chemistry , Imidazoles/chemistry , Imidazoles/chemical synthesis , Imidazoles/pharmacology , Computer Simulation , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis
2.
Molecules ; 28(7)2023 Mar 28.
Article En | MEDLINE | ID: mdl-37049768

Glycogen phosphorylase (GP) is a key regulator of glucose levels and, with that, an important target for the discovery of novel treatments against type 2 diabetes. ß-d-Glucopyranosyl derivatives have provided some of the most potent GP inhibitors discovered to date. In this regard, C-ß-d-glucopyranosyl azole type inhibitors proved to be particularly effective, with 2- and 4-ß-d-glucopyranosyl imidazoles among the most potent designed to date. His377 backbone C=O hydrogen bonding and ion-ion interactions of the protonated imidazole with Asp283 from the 280s loop, stabilizing the inactive state, were proposed as crucial to the observed potencies. Towards further exploring these features, 4-amino-3-(ß-d-glucopyranosyl)-5-phenyl-1H-pyrazole (3) and 3-(ß-d-glucopyranosyl)-4-guanidino-5-phenyl-1H-pyrazole (4) were designed and synthesized with the potential to exploit similar interactions. Binding assay experiments against rabbit muscle GPb revealed 3 as a moderate inhibitor (IC50 = 565 µM), but 4 displayed no inhibition at 625 µM concentration. Towards understanding the observed inhibitions, docking and post-docking molecular mechanics-generalized Born surface area (MM-GBSA) binding free energy calculations were performed, together with Monte Carlo and density functional theory (DFT) calculations on the free unbound ligands. The computations revealed that while 3 was predicted to hydrogen bond with His377 C=O in its favoured tautomeric state, the interactions with Asp283 were not direct and there were no ion-ion interactions; for 4, the most stable tautomer did not have the His377 backbone C=O interaction and while ion-ion interactions and direct hydrogen bonding with Asp283 were predicted, the conformational strain and entropy loss of the ligand in the bound state was significant. The importance of consideration of tautomeric states and ligand strain for glucose analogues in the confined space of the catalytic site with the 280s loop in the closed position was highlighted.


Glycogen Phosphorylase , Pyrazoles , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Glycogen Phosphorylase/antagonists & inhibitors , Glycogen Phosphorylase/metabolism , Density Functional Theory , Molecular Docking Simulation , Monte Carlo Method , Molecular Conformation , Glucose/analogs & derivatives , Glucose/chemistry , Glucose/metabolism , Glucose/pharmacology , Diabetes Mellitus, Type 2
3.
Org Biomol Chem ; 20(12): 2407-2423, 2022 03 23.
Article En | MEDLINE | ID: mdl-35119451

Molecular rotors belong to a family of fluorescent compounds characterized as molecular switches, where a fluorescence on/off signal signifies a change in the molecule's microenvironment. Herein, the successful synthesis and detailed study of (E)-2-cyano-3-(p-(dimethylamino)phenyl)-N-(ß-D-glucopyranosyl)acrylamide (RotA), is reported. RotA was found to be a strong inhibitor of rabbit muscle glycogen phosphorylase (RMGPb), that binds at the catalytic site of the enzyme. RotA's interactions with the residues lining the catalytic site of RMGPb were determined by X-ray crystallography. Spectroscopic studies coupled with theoretical calculations proved that RotA is a molecular rotor. When bound in the catalytic channel of RMGPb, it behaved as a light switch, generating a strong fluorescence signal, allowing utilization of RotA as a probe that locates glycogen phosphorylase (GP). RotA, mono-, di- and per-acetylated derivatives, as well as nanoparticles with RotA encapsulated in polyethylene glycol-poly-L-histidine, were used in live cell fluorescence microscopy imaging to test the delivery of RotA through the plasma membrane of HepG2 and A431 cells, with the nanoparticles providing the best results. Once in the intracellular milieu, RotA exhibits remarkable colocalization with GP and significant biological effects, both in cell growth and inhibition of GP.


Enzyme Inhibitors , Glucose , Molecular Probes , Animals , Binding Sites , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Glucose/analysis , Glycogen Phosphorylase/antagonists & inhibitors , Kinetics , Molecular Probes/chemistry , Oligosaccharides , Rabbits
4.
Nutrients ; 14(2)2022 Jan 12.
Article En | MEDLINE | ID: mdl-35057487

Glycogen phosphorylase (GP) is a key enzyme in the glycogenolysis pathway. GP inhibitors are currently under investigation as a new liver-targeted approach to managing type 2 diabetes mellitus (DM). The aim of the present study was to evaluate the inhibitory activity of a panel of 52 structurally related chromone derivatives; namely, flavonoids, 2-styrylchromones, 2-styrylchromone-related derivatives [2-(4-arylbuta-1,3-dien-1-yl)chromones], and 4- and 5-styrylpyrazoles against GP, using in silico and in vitro microanalysis screening systems. Several of the tested compounds showed a potent inhibitory effect. The structure-activity relationship study indicated that for 2-styrylchromones and 2-styrylchromone-related derivatives, the hydroxylations at the A and B rings, and in the flavonoid family, as well as the hydroxylation of the A ring, were determinants for the inhibitory activity. To support the in vitro experimental findings, molecular docking studies were performed, revealing clear hydrogen bonding patterns that favored the inhibitory effects of flavonoids, 2-styrylchromones, and 2-styrylchromone-related derivatives. Interestingly, the potency of the most active compounds increased almost four-fold when the concentration of glucose increased, presenting an IC50 < 10 µM. This effect may reduce the risk of hypoglycemia, a commonly reported side effect of antidiabetic agents. This work contributes with important considerations and provides a better understanding of potential scaffolds for the study of novel GP inhibitors.


Chromones/pharmacology , Flavonoids/pharmacology , Glycogen Phosphorylase/antagonists & inhibitors , Hypoglycemic Agents/pharmacology , Pyrazoles/pharmacology , Diabetes Mellitus, Type 2/enzymology , Humans , Molecular Docking Simulation , Structure-Activity Relationship
5.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(5): 406-411, 2022 Sep.
Article Zh | MEDLINE | ID: mdl-37088742

OBJECTIVE: In the present study, we determined whether the glycogen phosphorylase(GP)inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) ameliorates pentylenetetrazole (PTZ)-induced acute seizure, neuroinflammation and memory impairment in rats. METHODS: In experiment 1, rats were randomly divided into the Vehicle (n=5) and PTZ (n=5) groups, and received intraperitoneal injection of saline or PTZ (70 mg/kg), respectively. Hippocampal tissues were collected 30 min after drug injection. Western blot was used to examine the levels of GP expression. Colorimetric assay was used to determine the levels of lactate. In experiment 2, rats were randomly divided into the Vehicle+Vehicle (n=18), DAB+Vehicle (n=18), Vehicle+PTZ (n=19) and DAB+PTZ (n=18) groups. Rats received intracerebroventricular injection of PBS or DAB (50 µg/2 µl) 15 min before receiving intraperitoneal injection of saline or PTZ (70 mg/kg). Behavioural assays and the Racine scale were used to evaluate seizure severity. Western blot was used to examine the levels of targeted protein of hippocampal tissues. Novel object recognition test was used to assess memory performance. RESULTS: ① Compared with the Vehicle group, the levels of GP and lactate in the hippocampal tissues of the PTZ group were increased significantly (both P<0.01). ② Compared with the Vehicle+PTZ group, in the DAB+PTZ group, the levels of myoclonic body jerk latency, forelimb clonus latency and tonic-clonic seizure latency were increased significantly (all P<0.01), while the duration of seizure and seizure scores were decreased significantly (both P<0.01). ③ Compared with the Vehicle+Vehicle group, in the Vehicle +PTZ group, the levels of IL-1ß, IL-6, TNF-α, IBA-1 and GFAP in the hippocampal tissues were increased significantly (all P<0.01), and the discrimination index in the novel object recognition test was decreased significantly (P<0.01). Compared with the Vehicle+PTZ group, in the DAB+PTZ group, the levels of IL-1ß, TNF-α, IBA-1 and GFAP in the hippocampal tissues were decreased significantly (all, P<0.01), while the discrimination index in the novel object recognition test was increased significantly (P<0.01). CONCLUSION: DAB ameliorates PTZ-induced seizure, neuroinflammation and memory impairment in rats, suggesting that DAB may serve as a novel agent for potential clinical treatment of epilepsy.


Glycogen Phosphorylase , Neuroinflammatory Diseases , Seizures , Animals , Rats , Anticonvulsants/adverse effects , Anticonvulsants/therapeutic use , Glycogen Phosphorylase/antagonists & inhibitors , Lactates/adverse effects , Neuroinflammatory Diseases/drug therapy , Pentylenetetrazole/adverse effects , Seizures/chemically induced , Seizures/complications , Tumor Necrosis Factor-alpha
6.
Molecules ; 26(15)2021 Jul 30.
Article En | MEDLINE | ID: mdl-34361792

Glycogen phosphorylase (GP) is a key enzyme in the glycogenolysis pathway and a potential therapeutic target in the management of type 2 diabetes. It catalyzes a reversible reaction: the release of the terminal glucosyl residue from glycogen as glucose 1-phosphate; or the transfer of glucose from glucose 1-phosphate to glycogen. A colorimetric method to follow in vitro the activity of GP with usefulness in structure-activity relationship studies and high-throughput screening capability is herein described. The obtained results allowed the choice of the optimal concentration of enzyme of 0.38 U/mL, 0.25 mM glucose 1-phosphate, 0.25 mg/mL glycogen, and temperature of 37 °C. Three known GP inhibitors, CP-91149, a synthetic inhibitor, caffeine, an alkaloid, and ellagic acid, a polyphenol, were used to validate the method, CP-91149 being the most active inhibitor. The effect of glucose on the IC50 value of CP-91149 was also investigated, which decreased when the concentration of glucose increased. The assay parameters for a high-throughput screening method for discovery of new potential GP inhibitors were optimized and standardized, which is desirable for the reproducibility and comparison of results in the literature. The optimized method can be applied to the study of a panel of synthetic and/or natural compounds, such as polyphenols.


Glucose/chemistry , Glucosephosphates/chemistry , Glycogen Phosphorylase/chemistry , Glycogen/chemistry , Amides/pharmacology , Animals , Caffeine/pharmacology , Ellagic Acid/pharmacology , Enzyme Assays , Glycogen Phosphorylase/antagonists & inhibitors , Glycogen Phosphorylase/isolation & purification , High-Throughput Screening Assays , Indoles/pharmacology , Kinetics , Rabbits , Solutions , Structure-Activity Relationship
7.
Brain Res Bull ; 174: 240-249, 2021 09.
Article En | MEDLINE | ID: mdl-34175384

Repeated early environmental deprivation is regarded as a typical paradigm to mimic the behavioral abnormalities and brain dysfunction that occur in psychiatric disorders. Previously, we reported that social isolation could disrupt prepulse inhibition (PPI) in Sprague-Dawley (SD) rats, producing the typical characteristics of a schizophrenia animal model. Based on further analysis of previous proteomic and transcriptomic data, a disrupted balance of glucose metabolism was found in the prefrontal cortex (PFC) of isolated rats. Subsequently, in the first experiment of this study, we investigated the effects of juvenile social isolation (postnatal days (PND) 21-34) on PPI and lactate levels in PND56 rats. Compared with the social rearing group, rats in the isolated rearing group showed disrupted PPI and increased lactate levels in the PFC. In the second experiment, at PND55, the model rats were acutely injected with a glycogen phosphorylase inhibitor (4-dideoxy-1,4-imino-darabinitol, DAB) or control saline in the bilateral PFC. Our data showed that acute DAB administration (50 pmol, 0.5 µl) significantly improved the disrupted PPI and decreased the levels of oxidative phosphorylation (OXPHOS)-related mRNAs as well as lactate. In summary, our results suggested that excess astrocytic lactate production was involved in the impairment of auditory sensory gating of isolated rats, which may contribute to the metabolic pathogenesis of schizophrenia.


Astrocytes/metabolism , Lactic Acid/metabolism , Schizophrenia/metabolism , Schizophrenic Psychology , Social Isolation , Animals , Glucose/metabolism , Glycogen Phosphorylase/antagonists & inhibitors , Glycogen Phosphorylase/metabolism , Male , Oxidative Phosphorylation/drug effects , Prefrontal Cortex/metabolism , Prepulse Inhibition , Rats , Rats, Sprague-Dawley , Sensory Gating
8.
J Med Chem ; 64(11): 7156-7178, 2021 06 10.
Article En | MEDLINE | ID: mdl-34019396

The purine alkaloid caffeine is the most widely consumed psychostimulant drug in the world and has multiple beneficial pharmacological activities, for example, in neurodegenerative diseases. However, despite being an extensively studied bioactive natural product, the mechanistic understanding of caffeine's pharmacological effects is incomplete. While several molecular targets of caffeine such as adenosine receptors and phosphodiesterases have been known for decades and inspired numerous medicinal chemistry programs, new protein interactions of the xanthine are continuously discovered providing potentially improved pharmacological understanding and a molecular basis for future medicinal chemistry. In this Perspective, we gather knowledge on the confirmed protein interactions, structure activity relationship, and chemical biology of caffeine on well-known and upcoming targets. The diversity of caffeine's molecular activities on receptors and enzymes, many of which are abundant in the CNS, indicates a complex interplay of several mechanisms contributing to neuroprotective effects and highlights new targets as attractive subjects for drug discovery.


Caffeine/metabolism , Chemistry, Pharmaceutical , 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Caffeine/chemistry , Caffeine/therapeutic use , Glycogen Phosphorylase/antagonists & inhibitors , Glycogen Phosphorylase/metabolism , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/pathology , Neuroprotective Agents/chemistry , Neuroprotective Agents/metabolism , Neuroprotective Agents/therapeutic use , Pain/drug therapy , Pain/pathology , Purinergic P1 Receptor Antagonists/chemistry , Purinergic P1 Receptor Antagonists/metabolism , Purinergic P1 Receptor Antagonists/therapeutic use , Receptors, Purinergic P1/chemistry , Receptors, Purinergic P1/metabolism
9.
Future Med Chem ; 13(10): 897-909, 2021 05.
Article En | MEDLINE | ID: mdl-33906369

Glycogen phosphorylase (GP) is a key enzyme of glycogen catabolism, so it is significant to discover a new GP inhibitor. A series of benzazepinone derivatives were discovered as GP inhibitors with potent activity. Among these derivatives, compound 5d showed significant potential against rabbit muscle GPa (IC50 = 0.25 ± 0.05 µM) and cellular efficacy. The in vivo study revealed that 5d significantly inhibited increases in fasting blood glucose level in two kinds of hyperglycemic mice models. The possible binding mode of compound 5d was explored based on molecular docking simulations. These results indicated that derivatives with benzazepinone were potential chemical entities against hyperglycemia.


Benzazepines/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Glycogen Phosphorylase/antagonists & inhibitors , Hypoglycemic Agents/pharmacology , Animals , Benzazepines/chemical synthesis , Benzazepines/chemistry , Blood Glucose/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glycogen Phosphorylase/metabolism , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Male , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Rabbits
10.
Bioorg Chem ; 108: 104552, 2021 03.
Article En | MEDLINE | ID: mdl-33357981

Novel pharmacological strategies for the treatment of diabetic patients are now focusing on inhibiting glycogenolysis steps. In this regard, glycogen phosphorylase (GP) is a validated target for the discovery of innovative antihyperglycemic molecules. Natural products, and in particular flavonoids, have been reported as potent inhibitors of GP at the cellular level. Herein, free-energy calculations and microscale thermophoresis approaches were performed to get an in-depth assessment of the binding affinities and elucidate intermolecular interactions of several flavonoids at the inhibitor site of GP. To our knowledge, this is the first study indicating genistein, 8-prenylgenistein, apigenin, 8-prenylapigenin, 8-prenylnaringenin, galangin and valoneic acid dilactone as natural molecules with high inhibitory potency toward GP. We identified: i) the residues Phe285, Tyr613, Glu382 and/or Arg770 as the most relevant for the binding of the best flavonoids to the inhibitor site of GP, and ii) the 5-OH, 7-OH, 8-prenyl substitutions in ring A and the 4'-OH insertion in ring B to favor flavonoid binding at this site. Our results are invaluable to plan further structural modifications through organic synthesis approaches and develop more effective pharmaceuticals for Type 2 Diabetes treatment, and serve as the starting point for the exploration of food products for therapeutic usage, as well as for the development of novel bio-functional food and dietary supplements/herbal medicines.


Diabetes Mellitus, Type 2/drug therapy , Enzyme Inhibitors/pharmacology , Flavonoids/pharmacology , Glycogen Phosphorylase/antagonists & inhibitors , Hypoglycemic Agents/pharmacology , Diabetes Mellitus, Type 2/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Flavonoids/chemistry , Glycogen Phosphorylase/metabolism , Humans , Hypoglycemic Agents/chemistry , Models, Molecular , Molecular Structure , Structure-Activity Relationship
11.
PLoS One ; 15(9): e0236081, 2020.
Article En | MEDLINE | ID: mdl-32960890

Type 2 diabetes mellitus (T2DM), one of the most common metabolic diseases, is characterized by insulin resistance and inadequate insulin secretion of ß cells. Glycogen phosphorylase (GP) is the key enzyme in glycogen breakdown, and contributes to hepatic glucose production during fasting or during insulin resistance. Pharmacological GP inhibitors are potential glucose lowering agents, which may be used in T2DM therapy. A natural product isolated from the cultured broth of the fungal strain No. 138354, called 2,3-bis(4-hydroxycinnamoyloxy)glutaric acid (FR258900), was discovered a decade ago. In vivo studies showed that FR258900 significantly reduced blood glucose levels in diabetic mice. We previously showed that GP inhibitors can potently enhance the function of ß cells. The purpose of this study was to assess whether an analogue of FR258900 can influence ß cell function. BF142 (Meso-Dimethyl 2,3-bis[(E)-3-(4-acetoxyphenyl)prop-2-enamido]butanedioate) treatment activated the glucose-stimulated insulin secretion pathway, as indicated by enhanced glycolysis, increased mitochondrial oxidation, significantly increased ATP production, and elevated calcium influx in MIN6 cells. Furthermore, BF142 induced mTORC1-specific phosphorylation of S6K, increased levels of PDX1 and insulin protein, and increased insulin secretion. Our data suggest that BF142 can influence ß cell function and can support the insulin producing ability of ß cells.


Cinnamates/pharmacology , Enzyme Inhibitors/pharmacology , Glutarates/pharmacology , Glycogen Phosphorylase/antagonists & inhibitors , Insulin Secretion/drug effects , Insulin-Secreting Cells/drug effects , Succinic Acid/pharmacology , Animals , Cell Line, Tumor , Cinnamates/chemistry , Enzyme Inhibitors/chemistry , Glucose/metabolism , Glutarates/chemistry , Glycogen Phosphorylase/metabolism , Glycolysis/drug effects , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Methylation , Mice , Succinic Acid/chemistry
12.
J Agric Food Chem ; 68(37): 10191-10199, 2020 Sep 16.
Article En | MEDLINE | ID: mdl-32840370

Anthocyanins (ACNs) are dietary phytochemicals with an acknowledged therapeutic significance. Pomegranate juice (PJ) is a rich source of ACNs with potential applications in nutraceutical development. Glycogen phosphorylase (GP) catalyzes the first step of glycogenolysis and is a molecular target for the development of antihyperglycemics. The inhibitory potential of the ACN fraction of PJ is assessed through a combination of in vitro assays, ex vivo investigation in hepatic cells, and X-ray crystallography studies. The ACN extract potently inhibits muscle and liver isoforms of GP. Affinity crystallography reveals the structural basis of inhibition through the binding of pelargonidin-3-O-glucoside at the GP inhibitor site. The glucopyranose moiety is revealed as a major determinant of potency as it promotes a structural binding mode different from that observed for other flavonoids. This inhibitory effect of the ACN scaffold and its binding mode at the GP inhibitor binding site may have significant implications for future structure-based drug design endeavors.


Anthocyanins/chemistry , Enzyme Inhibitors/chemistry , Fruit and Vegetable Juices/analysis , Glycogen Phosphorylase/chemistry , Plant Extracts/chemistry , Pomegranate/chemistry , Amino Acid Motifs , Animals , Binding Sites , Crystallography, X-Ray , Glycogen Phosphorylase/antagonists & inhibitors , Hep G2 Cells , Humans , Kinetics , Protein Binding , Rabbits
13.
Bioorg Chem ; 102: 104003, 2020 09.
Article En | MEDLINE | ID: mdl-32771768

Glycogen phosphorylase (GP) is an important target for the development of new anti-hyperglycaemic agents. Flavonoids are novel inhibitors of GP, but their mode of action is unspecific in terms of the GP binding sites involved. Towards design of synthetic flavonoid analogues acting specifically at the inhibitor site and to exploit the site's hydrophobic pocket, chrysin has been employed as a lead compound for the in silico screening of 1169 new analogues with different B ring substitutions. QM/MM-PBSA binding free energy calculations guided the final selection of eight compounds, subsequently synthesised using a Baker-Venkataraman rearrangement-cyclisation approach. Kinetics experiments against rabbit muscle GPa and GPb together with human liver GPa, revealed three of these compounds (11, 20 and 43) among the most potent that bind at the site (Ki s < 4 µM for all three isoforms), and more potent than previously reported natural flavonoid inhibitors. Multiple inhibition studies revealed binding exclusively at the inhibitor site. The binding is synergistic with glucose suggesting that inhibition could be regulated by blood glucose levels and would decrease as normoglycaemia is achieved. Compound 43 was an effective inhibitor of glycogenolysis in hepatocytes (IC50 = 70 µM), further promoting these compounds for optimization of their drug-like potential. X-ray crystallography studies revealed the B-ring interactions responsible for the observed potencies.


Crystallography, X-Ray/methods , Diabetes Mellitus, Type 2/drug therapy , Flavonoids/therapeutic use , Glycogen Phosphorylase/antagonists & inhibitors , Hyperglycemia/drug therapy , Animals , Biological Products , Humans , Models, Molecular , Rabbits , Structure-Activity Relationship
14.
Bioorg Med Chem Lett ; 30(14): 127117, 2020 07 15.
Article En | MEDLINE | ID: mdl-32527535

A small set of indole-2-carboxamide derivatives identified from a high-throughput screening campaign has been described as a novel, potent, and glucose-sensitive inhibitors of glycogen phosphorylase a (GPa). Among this series of compounds, compound 2 exhibited moderate GP inhibitory activity (IC50 = 0.29 µM), good cellular efficacy (IC50 = 3.24 µM for HepG2 cells and IC50 = 7.15 µM for isolated rat hepatocytes), together with good absorption, distribution, metabolism, and elimination (ADME) profiles. The in vivo animal study revealed that compound 2 significantly inhibited an increase of fasting blood glucose level in adrenaline-induced diabetic mice.


Blood Glucose/drug effects , Diabetes Mellitus, Experimental/drug therapy , Enzyme Inhibitors/pharmacology , Glycogen Phosphorylase/antagonists & inhibitors , Hypoglycemic Agents/pharmacology , Indoles/pharmacology , Animals , Cell Proliferation/drug effects , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Epinephrine , Glycogen Phosphorylase/metabolism , Hep G2 Cells , Hepatocytes/drug effects , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Indoles/chemical synthesis , Indoles/chemistry , Mice , Molecular Structure , Rats , Structure-Activity Relationship
15.
Molecules ; 25(3)2020 Feb 06.
Article En | MEDLINE | ID: mdl-32041285

Despite the substantial interest in C-glycosyl heterocycles as mimetics of biologically active native glycans, the appearance of C-glycopyranosyl derivatives of six-membered heterocycles, both in synthetic and biological contexts, is rather scarce. As part of our ongoing research program aimed at preparing hitherto barely known 2-C-glycopyranosyl pyrimidines, the goal of the present study was to synthesize new 5-mono- and multiply substituted derivatives of this compound class. Thus, 2-C-(ß-D-glucopyranosyl)-5,6-disubstituted-pyrimidin-4(3H)-ones and 4-amino-2-C-(ß-D-glucopyranosyl)-5,6-disubstituted-pyrimidines were prepared by base-mediated cyclocondensations of O-perbenzylated and O-unprotected C-(ß-D-glucopyranosyl) formamidine hydrochlorides with methylenemalonic acid derivatives. The 2-C-(ß-D-glucopyranosyl)-5-substituted-pyrimidines were obtained from the same amidine precursors upon treatment with vinamidinium salts. The deprotected derivatives of these pyrimidines were tested as inhibitors of some glycoenzymes. None of them showed inhibitory activity towards glycogen phosphorylase and α- and ß-glucosidase enzymes, but some members of the sets exhibited moderate inhibition against bovine liver ß-galactosidase.


Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Glycogen Phosphorylase/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Animals , Cattle , alpha-Glucosidases/metabolism , beta-Galactosidase/metabolism
16.
Org Biomol Chem ; 18(5): 931-940, 2020 02 07.
Article En | MEDLINE | ID: mdl-31922157

The design of glycogen phosphorylase (GP) inhibitors targeting the catalytic site of the enzyme is a promising strategy for a better control of hyperglycaemia in the context of type 2 diabetes. Glucopyranosylidene-spiro-heterocycles have been demonstrated as potent GP inhibitors, and more specifically spiro-oxathiazoles. A new synthetic route has now been elaborated through 1,3-dipolar cycloaddition of an aryl nitrile oxide to a glucono-thionolactone affording in one step the spiro-oxathiazole moiety. The thionolactone was obtained from the thermal rearrangement of a thiosulfinate precursor according to Fairbanks' protocols, although with a revisited outcome and also rationalised with DFT calculations. The 2-naphthyl substituted glucose-based spiro-oxathiazole 5h, identified as one of the most potent GP inhibitors (Ki = 160 nM against RMGPb) could be produced on the gram-scale from this strategy. Further evaluation in vitro using rat and human hepatocytes demonstrated that compound 5h is a anti-hyperglycaemic drug candidates performing slightly better than DAB used as a positive control. Investigation in Zucker fa/fa rat model in acute and subchronic assays further confirmed the potency of compound 5h since it lowered blood glucose levels by ∼36% at 30 mg kg-1 and ∼43% at 60 mg kg-1. The present study is one of the few in vivo investigations for glucose-based GP inhibitors and provides data in animal models for such drug candidates.


Enzyme Inhibitors/pharmacology , Glucose/metabolism , Glycogen Phosphorylase/antagonists & inhibitors , Hypoglycemic Agents/pharmacology , Spiro Compounds/pharmacology , Thiazoles/pharmacology , Animals , Blood Glucose/metabolism , Cyclization , Density Functional Theory , Glycogen/metabolism , Glycogen Phosphorylase/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Inhibitory Concentration 50 , Kinetics , Lactones/chemical synthesis , Lactones/chemistry , Oxidation-Reduction , Rats, Zucker , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Stereoisomerism , Temperature , Thiazoles/chemical synthesis , Thiazoles/chemistry
17.
Biochem Cell Biol ; 98(4): 458-465, 2020 08.
Article En | MEDLINE | ID: mdl-31905009

Brain-type glycogen phosphorylase (pygb) is one of the rate-limiting enzymes in glycogenolysis that plays a crucial role in the pathogenesis of type 2 diabetes mellitus. Here we investigated the role of pygb in high-glucose (HG)-induced cardiomyocyte apoptosis and explored the underlying mechanisms, by using the specific pygb inhibitors or pygb siRNA. Our results show that inhibition of pygb significantly attenuates cell apoptosis and oxidative stress induced by HG in H9c2 cardiomyocytes. Inhibition of pygb improved glucose metabolism in cardiacmyocytes, as evidenced by increased glycogen content, glucose consumption, and glucose transport. Mechanistically, pygb inhibition activates the Akt-GSK-3ß signaling pathway and suppresses the activation of NF-κB in H9c2 cells exposed to HG. Additionally, pygb inhibition promotes the expression and the translocation of hypoxia-inducible factor-1α (HIF-1α) after HG stimulation. However, the changes in glucose metabolism and HIF-1α activation mediated by pygb inhibition are significantly reversed in the presence of the Akt inhibitor MK2206. In conclusion, this study found that inhibition of pygb prevents HG-induced cardiomyocyte apoptosis via activation of Akt-HIF-α.


Apoptosis , Brain/enzymology , Cardiovascular Diseases/prevention & control , Diabetes Mellitus, Type 2/complications , Glucose/toxicity , Glycogen Phosphorylase/antagonists & inhibitors , Myocytes, Cardiac/metabolism , Animals , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Cell Line , Glycogen Synthase Kinase 3 beta/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats , Signal Transduction , Sweetening Agents/toxicity
18.
J Mol Neurosci ; 70(5): 647-658, 2020 May.
Article En | MEDLINE | ID: mdl-31925707

Brain glycogen is a vital energy source during metabolic imbalance. Metabolic sensory neurons in the ventromedial hypothalamic nucleus (VMN) shape glucose counter-regulation. Insulin-induced hypoglycemic (IIH) male rats were infused icv with the glycogen breakdown inhibitor CP-316,819 (CP) to investigate whether glycogen-derived fuel controls basal and/or hypoglycemic patterns of VMN gluco-regulatory neuron energy stability and transmitter signaling. CP caused dose-dependent amplification of basal VMN glycogen content and either mobilization (low dose) or augmentation (high dose) of this depot during IIH. Drug treatment also prevented hypoglycemic diminution of tissue glucose in multiple structures. Low CP dose caused IIH-reversible augmentation of AMPK activity and glutamate decarboxylase (GAD) protein levels in laser-microdissected VMN GABA neurons, while the higher dose abolished hypoglycemic adjustments in these profiles. VMN steroidogenic factor-1 (SF-1) neurons exhibited suppressed (low CP dose) or unchanged (high CP dose) basal SF-1 expression and AMPK refractoriness of hypoglycemia at each dose. CP caused dose-proportionate augmentation of neuronal nitric oxide synthase protein and enhancement (low dose) or diminution (high dose) of this profile during IIH; AMPK activity in these cells was decreased in high dose-pretreated IIH rats. CP exerted dose-dependent effects on basal and hypoglycemic patterns of glucagon, but not corticosterone secretion. Results verify that VMN GABA, SF-1, and nitrergic neurons are metabolic sensory in function and infer that these populations may screen unique aspects of neurometabolic instability. Correlation of VMN glycogen augmentation with attenuated hypoglycemic VMN gluco-regulatory neuron AMPK activity implies that expansion of this fuel reservoir preserves cellular energy stability during this metabolic threat.


Enzyme Inhibitors/pharmacology , Glycogen/metabolism , Indoles/pharmacology , Neurotransmitter Agents/metabolism , Phenylbutyrates/pharmacology , Protein Kinases/metabolism , Ventromedial Hypothalamic Nucleus/metabolism , AMP-Activated Protein Kinase Kinases , Animals , Enzyme Inhibitors/administration & dosage , GABAergic Neurons/metabolism , Glutamate Decarboxylase/metabolism , Glycogen Phosphorylase/antagonists & inhibitors , Indoles/administration & dosage , Infusions, Intraventricular , Male , Phenylbutyrates/administration & dosage , Rats , Rats, Sprague-Dawley , Ventromedial Hypothalamic Nucleus/cytology , Ventromedial Hypothalamic Nucleus/drug effects
19.
Drug Dev Res ; 81(1): 70-84, 2020 02.
Article En | MEDLINE | ID: mdl-31696542

In this study, we report the ring transformation of 3-arylsydnone into 1-aryl-1H-pyrazole-3-carbonitriles via [3 + 2] cycloaddition with acrylonitrile. 1-Aryl-1H-pyrazole-3-carbonitrile underwent [2 + 3] cycloaddition with sodium azide to afford 5-(1-aryl-1H-pyrazol-3-yl)-1H-tetrazoles which were further subjected to N-alkylation with aryl/heteroaryl alkyl halides to afford 1,5- and 2,5-disubstituted tetrazoles. Furthermore, the title compounds were screened for in vivo antihyperglycemic activity using albino Wistar rats of either sex. Compounds 4a, 6b, 7a, 7b, 8b, and 9b showed maximum fall in the blood glucose levels in streptozotocin-induced diabetic rats after 5-7 days of administration. In support of antidiabetic activity, we also performed the experimental in vivo studies, namely, effect of compounds on enzymes (serum glutamic oxaloacetic transaminase, serum glutamic-pyruvic transaminase, creatinine, urea, and total protein), antihyperlipidemic, and histopathology. Moreover, the molecular docking study has been performed for potent molecules among the series with glycogen phosphorylase as target enzyme, and this study corroborated the experimental in vivo results.


Diabetes Mellitus, Experimental/drug therapy , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemical synthesis , Glycogen Phosphorylase/antagonists & inhibitors , Tetrazoles/administration & dosage , Tetrazoles/chemical synthesis , Acrylonitrile/chemistry , Animals , Blood Glucose/drug effects , Cycloaddition Reaction , Diabetes Mellitus, Experimental/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Female , Male , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Rats , Streptozocin , Structure-Activity Relationship , Tetrazoles/chemistry , Tetrazoles/pharmacology
20.
Molecules ; 24(12)2019 Jun 25.
Article En | MEDLINE | ID: mdl-31242546

In the case of type 2 diabetes, inhibitors of glycogen phosphorylase (GP) may prevent unwanted glycogenolysis under high glucose conditions and thus aim at the reduction of excessive glucose production by the liver. Anomeric spironucleosides, such as hydantocidin, present a rich synthetic chemistry and important biological function (e.g., inhibition of GP). For this study, the Suárez radical methodology was successfully applied to synthesize the first example of a 1,6-dioxa-4-azaspiro[4.5]decane system, not previously constructed via a radical pathway, starting from 6-hydroxymethyl-ß-d-glucopyranosyluracil. It was shown that, in the rigid pyranosyl conformation, the required [1,5]-radical translocation was a minor process. The stereochemistry of the spirocycles obtained was unequivocally determined based on the chemical shifts of key sugar protons in the 1H-NMR spectra. The two spirocycles were found to be modest inhibitors of RMGPb.


Enzyme Inhibitors/pharmacology , Glycogen Phosphorylase/antagonists & inhibitors , Uracil/pharmacology , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Kinetics , Magnetic Resonance Spectroscopy , Molecular Structure , Uracil/analogs & derivatives , Uracil/chemistry
...